
Launching Applications
with Docker, CoreOS,

Kubernetes and Co

thomas@endocode.com

HI!
 Thomas Fricke

thomas@endocode.com

CTO Endocode

● System Automation
● DevOps
● Cloud, Database and Software

Architect

ENDOCODE
● high-quality software solutions
● best software engineering practices: test driven
● well known open source projects: https://github.com/endocode
● diverse range of technologies
● decades of experience

○ software development,
○ team management
○ 100000s of server years in public and private clouds

● Be it web, mobile, server or desktop we use:
open source meet any challenge

https://github.com/endocode

F.E. A FEW DAYS AGO: FIXING A BUG
● Bug hunt in fleet
● Found the bug in a Go library:

https://golang.org/pkg/crypto/
● Fixed!!!

https://go-review.googlesource.com/#/c/20687/

https://go-review.googlesource.com/#/c/20687/
https://go-review.googlesource.com/#/c/20687/

MORE BUGFIX EXAMPLES
● Application breaks
● systemd problem
● NO! journald problem
● analysis: application writes a log line

longer than the kernel buffer used by journald
● FIX: enlarge the kernel buffer
● Push fix to the upstream kernel

AGENDA
Containers or Virtualization

Kubernetes

CoreOS

Starting point

Migration

Case Study: immmr

Success, challenges, ‘what is missing’

http://www.commitstrip.com/en/2016/06/24/how-to-host-a-coder-dinner-party/

http://www.commitstrip.com/en/2016/06/24/how-to-host-a-coder-dinner-party/
http://www.commitstrip.com/en/2016/06/24/how-to-host-a-coder-dinner-party/

CONTAINER OR VIRTUALIZATION
Topic Container Virtualisation

Isolation OS Level,
OS namespaces

CPU Level:
Ring 0/Ring 3

foreign CPU no yes, with emulation

foreign kernels, OS no yes kernel is
common

emulated devices no yes security

host devices direct virtio driver security

CPU performance 100% 95%

IO performance 100% <<100%

root isolation yes yes USER
directive

CPU cache attacks easy possible PoC ?

LAYOUT

Greek for “Helmsman”; also the root of the
words “governor” and “cybernetic”

● Runs and manages containers
● Inspired and informed by Google’s

experiences and internal systems
● Supports multiple cloud and bare-metal

environments
● Supports multiple container runtimes
● 100% Open source, written in Go

Manage applications, not machines

Kubernetes

 Google Cloud Platform

kubelet

 UI

kubelet CLI

 API

users master nodes

 The 10000 foot view

etcd

kubelet

scheduler

controllers

apiserver

 Google Cloud Platform

 UI

 All you really care about

API
Container

Cluster

CoreOS

CoreOS trusted computing

Kubernetes

rkt

CoreOS Linux

Firmware TPM
TPM

Cluster access

Container Integrity

OS Integrity

Hardware

ECOSYSTEM

Torus

STARTING POINT - ARCHITECTURE

WE NEVER START FROM SCRATCH

- Almost no project starts from a green field
- Technical debt
- environments not made for microservices

● strict layered
architecture
○ separation of

stateless
○ and persistent data

● inside the pods
○ developers are free

to use what they
want

○ contract is binding to
the outside

EXISTING HETEROGENEOUS ENVIRONMENT

- Programming languages and their runtimes
- Various databases from various generations

- SQL
- NoSQL

- Local and sessions storage
- Message queueing

SEMI-AUTOMATED DEPLOYMENT

- Deployment chain automation
- Knowledge about staging and release processes typically implicit and

critical

VM CLUSTER BASED ARCHITECTURES

- Assumes complete OS
- Package management
- Configuration management (at runtime)

MIGRATION

FROM VMs TO PODS
OS instances microservices in Pods

- pods are containers sharing the same fate
- created together
- running on same node
- terminationg together
- one network address
- shared volumes

FROM VMs TO PODS

VM cluster Pods running on Kubernetes

- cattle: stateless containers
- pets: databases

configuration management separation of build time
and run time

STEP 1: STATELESS AND STATEFUL SERVICES

- where to keep state? A trade-off
- provider → lock-in
- self-managed → overhead

- cattle, no pets
- mindset: ephemeral deployment units

STEP 2: FRONT END AND BUSINESS LOGIC
- Migrate frontend to a stateless, load-balanced Kubernetes service
- Make everything explicit

- Firewall and load-balancer
- front-ends

- web
- mobile
- native
- embedded
- IoT
- TV

- caching
- cusiness logic
- persistence

STEP 3: STANDARDISED DEPLOYMENT PIPELINE
- dev/test/prod, more stages possible (QA, …)

- Services, labels

- parametrization
- etcd
- environment variables
- secrets in kubernetes

- logging (rsyslog, ELK, splunk)
- not every utility needs to be container specific

- measurements
- f.e. prometheus metrics (easy to integrate in apps and services)

STEP 3: FRONT END AND BUSINESS LOGIC

- Avoid privileged ‘special’ applications
- application server
- LAMP stack

- separating concerns
- web Interface
- application service
- scalable through parallelism

ARCHITECTURE
WRAP UP

● Desired Architecture
● Cleanups
● Ready to Rock

CASE STUDY

immmr - one number for every need
 immmr combines the best

of Internet base
communication with the
advantages of mobile
communication

immmr makes it possible
to use a single mobile
number from any device

immmr - one number for every need
Coming later in 2016:

Launch as an independent, open communications service for voice,
messaging and video telephony in the second half of 2016.

The service developed by immmr GmbH, a subsidiary of Deutsche Telekom
in Berlin, is currently being tested in selected European countries.

http://www.immmr.com/

http://www.immmr.com/
http://www.immmr.com/

FROM THE TRENCHES
- Easy:

- Java with SpringBoot
- Python

- Hard:
- Ruby Gems

- Separation
- build
- deployment

- no compiler in production
- change to a static Ruby binary traveling ruby
- adapt to database supported by your cloud provider
- ruby hersion hell: rvh^hm

FROM THE TRENCHES

- Lessons learned preparing for a security audit:
- this needed to be done anyway
- separation of stateless and persistent services is

a good idea anyway and with containers really important
- Dockerfiles need careful design to be fast
- private registry for images recommended (same region)
- quay.io

- container life cycle monitoring
- CVE database

RESULTS AND EXPERIENCES
- Scalable, kubified application

- Service architecture as it always should have been :-)

- Reduced technical debt and implicit knowledge
- Standardised processes and APIs for services management

- Previously, practises varied between projects

- Pod as deployment unit, single process per container
- Pods are containers sharint the same fate

- Service as load-balanced entry point
- external service
- no LB cluster hassle

- smaller deployments

BUSINESS VALUE
- faster deployments:

- faster time to market
- more and faster testing
- more teams possible

- faster deployment
- better quality

- less maintenance in operations
- less load
- simpler deployments

RESULTS AND EXPERIENCES

Separation of build-time and run-time
- PODs should require only minimal parametrization for being deployed

- Secrets
- Environment variables

- Ongoing debate on role of configuration management, our assumption:
- Configuration management is a build-time issue
- It should not be deployed with the container

SUCCESS, CHALLENGES,
‘WHAT IS MISSING’

CONTAINER LIFECYCLE MANAGEMENT

Part 1: Build-time related
- Audits, scanning of container content in the registry
- Management of ephemeral configuration

(as in regular scheduled updates of keys, …)
- Stop-gap: rebuild container often, deploy new versions

- Leaner containers
- immutable containers on immutable CoreOS
- incredibly shrinking deployments

CONTAINER LIFECYCLE MANAGEMENT

Part 2: Runtime related
- Monitoring of pods, containers and apps/processes
- Lifecycle management
- Cleanup of nodes (minions) after POD end-of-live

- Issue with multi-tenant readiness
- Clean-up, … - issue of isolation beyond individual process (in container)

BEST PRACTISES & SIDE EFFECTS
Best practice for deployment pipelines/continuous delivery

- The last thing that is still mostly hand-made for each project
- Often violates ‘infrastructure is code’ paradigm

Side effects of rolling updates

- Database migrations
- Difficult to roll back, structural changes stay behind or require global lock
- Solutions are being developed (e.g. crate.io)

CONTAINERIZING APPLICATIONS

- Baggage:
- runtimes of existing program environments (Java, Rails, …)

- package management: gems, eggs, npm, external jars
this is not specific to containers

- Trade-off between maintenance and migrating to container-focused
languages like Go

DOES IT SCALE IN REAL LIFE?

YES

- scaling by country
- or single-tenant and multi-tenant use cases
- surprisingly, quite often VMs provide underlying isolation

YOUR PRIVATE KUBERNETES DATACENTER
You need providers for:

- Storage
- Network
- Firewalls

https://endocode.com/blog/
2016/01/29/endocodecfgmgmtcamp/

https://endocode.com/blog/
https://endocode.com/blog/

MORE FROM ENDOCODE

- https://endocode.com
- https://endocode.com/blog/
- https://endocode.com/trainings-overview/
- Visit us on GitHub

https://github.com/endocode

https://endocode.com/blog/
https://endocode.com/blog/
https://endocode.com/blog/
https://endocode.com/blog/
https://endocode.com/trainings-overview/
https://endocode.com/trainings-overview/

Dive into Kubernetes!
Watch our Webinar ‘Dive into Kubernetes’ on our YouTube Channel

https://youtu.be/8694GGJlpZ8

Register for a free Google Cloud Platform Trial with $300 Google Cloud Platform
Credits

https://goo.gl/dUzDWi

Use another $200 partner credits

https://goo.gl/eYldnT

https://youtu.be/8694GGJlpZ8
https://youtu.be/8694GGJlpZ8
https://goo.gl/dUzDWi
https://goo.gl/dUzDWi
https://goo.gl/eYldnT
https://goo.gl/eYldnT

QUESTIONS?

