
Launching Applications 
with Docker, CoreOS, 

Kubernetes and Co

thomas@endocode.com



HI!
   Thomas Fricke

thomas@endocode.com

CTO Endocode

● System Automation
● DevOps 
● Cloud, Database and Software 

Architect



ENDOCODE
● high-quality software solutions 
● best software engineering practices: test driven
● well known open source projects: https://github.com/endocode
● diverse range of technologies 
● decades of experience 

○ software development, 
○ team management 
○ 100000s of server years in public and private clouds

● Be it web, mobile, server or desktop we use:
open source meet any challenge

https://github.com/endocode


F.E. A FEW DAYS AGO: FIXING A BUG
● Bug hunt in fleet
● Found the bug in a Go library: 

https://golang.org/pkg/crypto/
● Fixed!!!

https://go-review.googlesource.com/#/c/20687/

https://go-review.googlesource.com/#/c/20687/
https://go-review.googlesource.com/#/c/20687/


MORE BUGFIX EXAMPLES
● Application breaks
● systemd problem
● NO! journald problem
● analysis: application writes a log line

longer than the kernel buffer used by journald
● FIX: enlarge the kernel buffer
● Push fix to the upstream kernel



AGENDA
Containers or Virtualization

Kubernetes

CoreOS

Starting point

Migration

Case Study: immmr

Success, challenges, ‘what is missing’



http://www.commitstrip.com/en/2016/06/24/how-to-host-a-coder-dinner-party/

http://www.commitstrip.com/en/2016/06/24/how-to-host-a-coder-dinner-party/
http://www.commitstrip.com/en/2016/06/24/how-to-host-a-coder-dinner-party/


CONTAINER OR VIRTUALIZATION
Topic Container Virtualisation

Isolation OS Level, 
OS namespaces

CPU Level: 
Ring 0/Ring 3

foreign CPU no yes, with emulation

foreign kernels, OS no yes kernel is 
common

emulated devices no yes security

host devices direct virtio driver security

CPU performance 100% 95%

IO performance 100% <<100%

root isolation yes yes USER 
directive

CPU cache attacks easy possible PoC ?



LAYOUT



Greek for “Helmsman”; also the root of the 
words “governor” and “cybernetic”

● Runs and manages containers
● Inspired and informed by Google’s 

experiences and internal systems
● Supports multiple cloud and bare-metal 

environments
● Supports multiple container runtimes
● 100% Open source, written in Go

Manage applications, not machines

Kubernetes
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CoreOS



CoreOS trusted computing

Kubernetes

rkt

CoreOS Linux
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ECOSYSTEM
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STARTING POINT - ARCHITECTURE



WE NEVER START FROM SCRATCH

- Almost no project starts from a green field
- Technical debt
- environments not made for microservices



● strict layered 
architecture
○ separation of 

stateless
○ and persistent data

● inside the pods
○ developers are free 

to use what they 
want

○ contract is binding to 
the outside



EXISTING HETEROGENEOUS ENVIRONMENT

- Programming languages and their runtimes
- Various databases from various generations

- SQL
- NoSQL

- Local and sessions storage
- Message queueing



SEMI-AUTOMATED DEPLOYMENT

- Deployment chain automation 
- Knowledge about staging and release processes typically implicit and 

critical



VM CLUSTER BASED ARCHITECTURES

- Assumes complete OS
- Package management 
- Configuration management (at runtime)



MIGRATION



FROM VMs TO PODS
OS instances             microservices in Pods

- pods are containers sharing the same fate
- created together
- running on same node
- terminationg together
- one network address
- shared volumes



FROM VMs TO PODS

VM cluster                  Pods running on Kubernetes

- cattle: stateless containers
- pets: databases

configuration management        separation of build time 
and run time



STEP 1: STATELESS AND STATEFUL SERVICES

- where to keep state? A trade-off
- provider → lock-in
- self-managed → overhead

- cattle, no pets
- mindset: ephemeral deployment units



STEP 2: FRONT END AND BUSINESS LOGIC
- Migrate frontend to a stateless, load-balanced Kubernetes service
- Make everything explicit

- Firewall and load-balancer
- front-ends

- web
- mobile
- native
- embedded
- IoT
- TV

- caching
- cusiness logic
- persistence



STEP 3: STANDARDISED DEPLOYMENT PIPELINE
- dev/test/prod, more stages possible (QA, …) 

- Services, labels

- parametrization
- etcd
- environment variables
- secrets in kubernetes

- logging (rsyslog, ELK, splunk)
- not every utility needs to be container specific

- measurements
- f.e. prometheus metrics (easy to integrate in apps and services)



STEP 3: FRONT END AND BUSINESS LOGIC

- Avoid privileged ‘special’ applications 
- application server
- LAMP stack

- separating concerns
- web Interface
- application service
- scalable through parallelism 



ARCHITECTURE 
WRAP UP

● Desired Architecture
● Cleanups
● Ready to Rock



CASE STUDY



immmr - one number for every need
 immmr combines the best 

of Internet base 
communication with the 
advantages of mobile 
communication

immmr makes it possible 
to use a single mobile 
number from any device

 



immmr - one number for every need
Coming later in 2016: 

Launch as an independent, open communications service for voice, 
messaging and video telephony in the second half of 2016. 

The service developed by immmr GmbH, a subsidiary of Deutsche Telekom 
in Berlin, is currently being tested in selected European countries.

http://www.immmr.com/

 

http://www.immmr.com/
http://www.immmr.com/


FROM THE TRENCHES
- Easy:

- Java with SpringBoot
- Python

- Hard:
- Ruby Gems

- Separation 
- build
- deployment

- no compiler in production
- change to a static Ruby binary traveling ruby
- adapt to database supported by your cloud provider
- ruby hersion hell: rvh^hm



FROM THE TRENCHES

- Lessons learned preparing for a security audit: 
- this needed to be done anyway
- separation of stateless and persistent services is 

a good idea anyway and with containers really important
- Dockerfiles need careful design to be fast
- private registry for images recommended (same region)
- quay.io 

- container life cycle monitoring
- CVE database



RESULTS AND EXPERIENCES
- Scalable, kubified application

- Service architecture as it always should have been :-)

- Reduced technical debt and implicit knowledge
- Standardised processes and APIs for services management

- Previously, practises varied between projects

- Pod as deployment unit, single process per container
- Pods are containers sharint the same fate

- Service as load-balanced entry point
- external service
- no LB cluster hassle

- smaller deployments



BUSINESS VALUE
- faster deployments:

- faster time to market
- more and faster testing
- more teams possible

- faster deployment
- better quality 

- less maintenance in operations
- less load
- simpler deployments



RESULTS AND EXPERIENCES

Separation of build-time and run-time
- PODs should require only minimal parametrization for being deployed

- Secrets
- Environment variables

- Ongoing debate on role of configuration management, our assumption:
- Configuration management is a build-time issue
- It should not be deployed with the container



SUCCESS, CHALLENGES, 
‘WHAT IS MISSING’



CONTAINER LIFECYCLE MANAGEMENT

Part 1: Build-time related
- Audits, scanning of container content in the registry
- Management of ephemeral configuration 

(as in regular scheduled updates of keys, …)
- Stop-gap: rebuild container often, deploy new versions

- Leaner containers
- immutable containers on immutable CoreOS
- incredibly shrinking deployments 



CONTAINER LIFECYCLE MANAGEMENT

Part 2: Runtime related
- Monitoring of pods, containers and apps/processes
- Lifecycle management
- Cleanup of nodes (minions) after POD end-of-live

- Issue with multi-tenant readiness
- Clean-up, … - issue of isolation beyond individual process (in container)



BEST PRACTISES & SIDE EFFECTS 
Best practice  for deployment pipelines/continuous delivery

- The last thing that is still mostly hand-made for each project
- Often violates ‘infrastructure is code’ paradigm

Side effects of rolling updates 

- Database migrations
- Difficult to roll back, structural changes stay behind or require global lock
- Solutions are being developed (e.g. crate.io)



CONTAINERIZING APPLICATIONS

- Baggage: 
- runtimes of existing program environments (Java, Rails, …)

- package management: gems, eggs, npm, external jars
this is not specific to containers

- Trade-off between maintenance and migrating to container-focused 
languages like Go



DOES IT SCALE IN REAL LIFE?



YES

- scaling by country
- or single-tenant and multi-tenant use cases 
- surprisingly, quite often VMs provide underlying isolation 



YOUR PRIVATE KUBERNETES DATACENTER
You need providers for:

- Storage
- Network
- Firewalls

https://endocode.com/blog/
2016/01/29/endocodecfgmgmtcamp/

https://endocode.com/blog/
https://endocode.com/blog/


MORE FROM ENDOCODE 

- https://endocode.com
- https://endocode.com/blog/
- https://endocode.com/trainings-overview/
- Visit us on GitHub

https://github.com/endocode

https://endocode.com/blog/
https://endocode.com/blog/
https://endocode.com/blog/
https://endocode.com/blog/
https://endocode.com/trainings-overview/
https://endocode.com/trainings-overview/




Dive into Kubernetes! 
Watch our Webinar ‘Dive into Kubernetes’ on our YouTube Channel

https://youtu.be/8694GGJlpZ8

Register for a free Google Cloud Platform Trial with $300 Google Cloud Platform 
Credits 

https://goo.gl/dUzDWi

Use another $200 partner credits

https://goo.gl/eYldnT

https://youtu.be/8694GGJlpZ8
https://youtu.be/8694GGJlpZ8
https://goo.gl/dUzDWi
https://goo.gl/dUzDWi
https://goo.gl/eYldnT
https://goo.gl/eYldnT


QUESTIONS?


